Modeling topic and community structure in social tagging: The TTR-LDA-Community model

نویسندگان

  • Daifeng Li
  • Ying Ding
  • Cassidy R. Sugimoto
  • Bing He
  • Jie Tang
  • Erjia Yan
  • Nan Lin
  • Zheng Qin
  • Tianxi Dong
چکیده

School of Information Management and Engineering, Shanghai University of Finance and Economics, Shanghai, China School of Library and Information Science, Indiana University, Bloomington, IN, USA Department of Computer Science and Technology, Tsinghua University,China School of International Business Administration, Shanghai University of Finance and Economics, Shanghai, China Rawls College of Business, Texas Tech University, TX, USA. [email protected] ,{binghe, dingying, sugimoto, eyan}@indiana.edu, [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Community Detection Based on Topic Distance in Social Tagging Networks

Research on the community detection in social tagging networks has attracted much attention in the last decade. Extracting the hidden topic information from tags provides a new way of thinking for community detection in social tagging networks. In this paper, a topic tagging network by extracting several topics from the tags through using the Latent Dirichlet Allocation (LDA) model is built fir...

متن کامل

Modeling Community Question-Answering Archives

Community Question Answering (CQA) services contain large archives of previously asked questions and their answers. We present a statistical topic model for modeling Question-Answering archives. The model explicitly captures relationships between questions and their answers by modeling topical dependencies. We show that the model achieves improved performance in retrieving the correct answer fo...

متن کامل

Modeling and Leveraging Social Collective Intelligence

The rise of social interactions on the Web requires developing new methods of information organization and discovery. To that end, we propose a generative community-based probabilistic tagging model that can automatically uncover communities of users and their associated tags. We experimentally validate the quality of the discovered communities over the social bookmarking system Delicious. In c...

متن کامل

Automatic keyword extraction using Latent Dirichlet Allocation topic modeling: Similarity with golden standard and users' evaluation

Purpose: This study investigates the automatic keyword extraction from the table of contents of Persian e-books in the field of science using LDA topic modeling, evaluating their similarity with golden standard, and users' viewpoints of the model keywords. Methodology: This is a mixed text-mining research in which LDA topic modeling is used to extract keywords from the table of contents of sci...

متن کامل

Sentiment Analysis in Social Networks through Topic modeling

In this paper, we analyze the sentiments derived from the conversations that occur in social networks. Our goal is to identify the sentiments of the users in the social network through their conversations. We conduct a study to determine whether users of social networks (twitter in particular) tend to gather together according to the likeness of their sentiments. In our proposed framework, (1) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JASIST

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2011